
1 of 13

A Business Process Environment
Supporting Collaborative Planning

Keith D Swenson, Robin J Maxwell, Toshikazu Matsumoto,
Bahram Saghari, Kent Irwin

Fujitsu Open Systems Solutions, Inc.
kswenson@ossi.com

A model for collaborative work process and a graphical language to support this model is presented.
The model allows for informal flow of communications and flexible access to information along with a
formal flow of responsibility. This approach results in a model of a work process in terms of the
communications that team members must make in order to coordinate their tasks. The systems is
designed with the intent that the planning activity itself is accomplished in a collaborative way, with
many people having input to and control over different parts of the plan. This is contrasted to
approaches where the work process is modeled according to the work being done and where the
process is either fixed or is entered by a single person.

1.0 Introduction
Information technology has proven to be a great aid in
automating and accelerating well defined production activi-
ties. While computers have become relatively ubiquitous in
the office setting, there is a lack of conclusive evidence
suggesting that computers have been successful in increasing
productivity of an organization at an aggregate level. There
are undoubtedly a number of reasons for this “Productivity
Paradox”.[23][3][31][19]

One very promising approach to increasing organizational
productivity through the use of information technology is
termed “Business Process Reengineering”[35][5]. Studies
have shown that automating an existing manual work
process will have a very slight effect on productivity[23].
Instead, if the entire process is examined, and then
redesigned to take into account capabilities provided by
information technology, phenomenal increases in produc-
tivity can be achieved[12]. These increases in productivity
typically arise out of reducing the number of individual steps
to complete a process[10].

The new process is made out of tasks which are less menial
in nature, and the individual is empowered to play a more
influential role in the process. Thus the advantages of BPR
are not only those of improving organizational productivity,

This work was supported in full by Fujitsu Ltd. and by
Fujitsu Open Systems Solutions, Inc.

Author’s present address: Fujitsu Open Systems Solutions, Inc.,
3055 Orchard Dr., San Jose, CA, 95134, USA

but also as a way to improve individual “quality of work
life”.

Before a work process can be improved, it must be visual-
ized and understood. A graphical representation of the work
process is needed that not only represents the process, but is
also a complete enough description of the process that it can
be used to program a process support tool. Furthermore, the
visual representation must be clear enough that it can be read
easily by all members of a team, not just the process
programming specialists.

1.1 Regatta Project Goals

The Regatta group was formed in 1991 in order to develop
software to support workgroups and to aid in reengineering
work processes[32][33][34]. In order to achieve this the
Regatta project has set three specific goals:

1. To make software that supports thecoordination of activ-
ities of different members of a group by automating work
processes.

2. To make software that allows every individual in a group
to gain a betterunderstanding of how their group or orga-
nization works. It is not sufficient that a work flow tool
act as a black box process. An individual needs to under-
stand how the current task fits into the overall picture.
Furthermore, the software must aid in the discovery of the
process.

3. To make software that supports thechange of processes.
In order to see any real improvement in the work process,
the users must be able to modify and fine tune processes.

Accepted for publication in
The Journal Of Collaborative Computing, Vol 1, No 1, Spring 1994



Introduction

A Business Process Environment Supporting Collaborative Planning 2 of 13

April 27, 1994

1.2 How Regatta Differs from Other
Approaches

There have been a number of other approaches to supporting
and improving work processes. The pioneering work was
Michael Zisman’s SCOOP project in 1977[36][37], Clarence
Ellis’ OfficeTalk[4] and BDL from IBM[11]. A number of
document imaging and processing companies developed
work flow technology in the early 80’s. These systems use a
number of different methodologies for describing the
processes, from hard coded compiled language, to rules
based routing, to PERT chart style graphical means.

The commonality between all of these systems is the separa-
tion of the planner from the user. The typical scenario
involves an audit of the way the process is currently done
and how it can be improved by interviewing a representative
sample of the people involved in the work. Subsequently a
programmer implements the process. Finally the process
support application is deployed across the organization.
Inefficiencies and inadequacies of the process are fed back to
the planner and some time later an improved process will be
deployed.

Regatta takes a strikingly different approach; process plans
can be created and modified by the end user allowing users
to experiment and find the best process. It has been shown
that interviewing people about what they do will not always
yield an accurate description of what they do[38], so Regatta
allows groups to find the process through use and experi-
mentation. Instead of a single programmer for the entire
process, Regatta processes are composed from pieces
supplied by different users, so we call it Collaborative
Planning. Rather than force every group in the organization
to work in exactly the same way, different individuals or
groups are allowed to have different plans to achieve the
same goal, thereby allowing each group to find the plan that
works best for them. Process plans can be modified even
while being enacted, which allows people to start with
incomplete plans and to complete them as they go, and also
to respond to exceptions as they arise rather than being
forced to make conditions for all possible exception up front.

What Regatta offers to process support might be analogous
to what spreadsheets offered to financial reports. In the 70’s
financial reports were provided by MIS. When one wanted a
new report, one gave them the specification, they got a
programmer to code it up, and a little while later you would
begin receiving those reports on a regular basis. The intro-
duction of spreadsheets dramatically changed this because it
allowed people to formulate their own reports, to experiment
with new combinations, without waiting, without program-
ming in the traditional sense, and in general to have more
control over their own reports. A recent report shows that
this “empowerment” is important.[2] Regatta allows people
to have control over the processes to meet their goals.

To accomplish this the system needs to do more than just
allow users to change processes. There are many design
considerations to make sure that such changes happen in a
controlled way.

1.3 Requirements of the Visual Process
Language (VPL)

Ease of Process Definition: Collaborative processes need to
be defined in such a way that the average user could change
and create process descriptions. Experience with non-
programmers suggests the use of a picture oriented approach
to describing a process.[30][15]

User Orientation: The process should appear graphically in
a way that matches the user’s perception of the process, and
not necessarily how the system implements it. The choices
and the steps taken by the user should be emphasized, while
allowing automated actions to be associated where appro-
priate.

Parallelism: Teams work in parallel; the process description
should allow any number of concurrent activities.

Abstraction and Decomposition: Since each person views
what is happening in their own way, it is important that the
plan they define works at the level that they do. Higher level
people use greater generalizations and “manipulate” at a
more abstract level, while lower level people are concerned
with the details.

Iteration : The process may include iteration. VPL must be
able to represent the case where a task, or process, is
repeated until it meets some quality control.

Branches: Decisions may be made that effect how the
process is to be completed. VPL must clearly represent the
choices to be made, and the subsequent paths.

Delegation: A plan must be able to represent delegation
well, so that when one person delegates a task to another, it
appears as a delegated task, and not as a myriad of detailed
things for the other person to perform. Users need to under-
stand not only that the task exists to be performed, but also
some idea of how the task came to be assigned to them.

Control of plan: The system must allow the person who is
responsible for a particular result to modify that part of the
plan, while protecting that part from modification by others.

1.4 Requirements for the Collaboration Model

Ease of Monitoring Process: In addition to being easy to
program, one purpose of the graphical representation is to
visually represent the current state of a process to help the
participants in the process understand what has happened
and what may happen next.

Dynamic Modification: Once a process has begun execu-
tion, it may be changed due to special circumstances not
foreseeable at the time of definition (e.g. exception
handling). A plan (the definition of a process) must be
modified easily on a case by case basis, without requiring
that the process be restarted at the beginning.

Partial Definitions: Requiring that the process be complete
to the n-th detail before starting would be a barrier to use in
most situations. It is important that the user is able to define
part of the plan in order to start the process, and is able to



The Model

A Business Process Environment Supporting Collaborative Planning 3 of 13

April 27, 1994

add to the plan description as the process advances. It has
been suggested that it may not be possible to completely
define many processes beforehand due to inconsistent micro-
theories of how the task should be done whose conflicts do
not get resolved until after the process is started.[14]

Individually Tailorable : The model must be designed such
that each person or group can supply their own plan template
for a particular task or goal. When an individual receives a
request, the system must use the appropriate plan template,
“inheriting” a template from the group if no individual
template exists.

Authority : Since steps in a process are real and potentially
lengthy tasks, the system must be clear about the authority of
the origination of the tasks. Any user may create a process,
but it should not be possible for a user to impersonate
another as the requester of a task. To do this, the system
should accurately communicate the authority of the origi-
nator of a request.

Although the handling is different from email, it is useful to
think of the stage as an email message that is delivered when
the stage is activated.

After acceptance, the assignee is then free to specify a plan
to be used to accomplish the task. The plan may be created
on the fly with the goal to handle that specific task, or may be
read in from a plan template that had been created before-
hand. The assignee becomes the owner of this plan. Since
the assignee is responsible for the completion of the goal, as
owner he is the only person allowed to make changes in this
plan.

Each of the stages that compose a plan are themselves
requests from the owner of the plan, to the assignee to
perform a particular task or answer a question. These
requests may in turn be accepted or declined, and if accepted
may have subplans in order to implement them. The new
assignee is the owner of this new level of plan. In this
manner the work to be done is decomposed into smaller
tasks.

If the task is sufficiently simple that it need not be decom-
posed into separate subtasks, then it can be handled
manually. The options made available in the request appear
on the user interface as menu items. Selecting the menu item
can cause the completion of the stage, and activation of the
next step in the plan.

Plan templates can be automatically invoked in response to a
request. As the work is decomposed, the subtasks become
more common and more likely to have a plan template
already developed for them, witch can be invoked to
automatically create the plan. Since a plan template makes
its requests for subtasks in a consistent manner, these
requests become in a sense “standard” requests, making it

Negotiation: While the system automates the assignment of
tasks to people, it is important that users retain the ability to
manage their own work load. An assignee too busy or other-
wise unable to handle a task may decline the task, and the
system must raise a form of an exception. This mechanism
should support a rich free-form communication between the
requester and the assignee within the context of the process
so that the task might be reassigned, or the plan modified so
that work can continue. In a complex system such exceptions
might be common, and it must be a feature of the system to
support the resolution of such conflicts.

Automation: The system must automate process so that
workers can concentrate upon their specialization, spend less
time on coordination issues, and make fewer mistakes in
forwarding.

Open: The system needs to support the use of tools that are
specialized to the user’s needs. It should not expect all work
to be done within the system. The model should anticipate
use of external tools and still provide sequencing support of
the various tasks that need to be done with those tools.

2.0 The Model
Primarily, the model provides a shared collaboration space,
called acolloquy, in which to coordinate a set of tasks that
are performed to accomplish a specified goal. Much has been
said about the benefit of such a shared space for collabora-
tion. [26][25] ConversationBuilder[17][18] has shown that
such an approach can be an effective framework for a wide
variety of collaborative activities. Like ConversationBuilder,
this model provides for active support of collaboration.

A colloquy is composed of a shared data space and a collec-
tion of plans. The shared data space can hold documents and
other artifacts. Plans are representations of the process.

2.1 Plans

The model takes a task oriented approach. A plan is a
network of stages; a stage is the communications needed to
coordinate a task or question. A stage is always a request
from one person (the requester) to another person (the
assignee). In response, the assignee is expected to complete
the task by choosing an option, or to start a subplan to
automate at a finer level of detail. This paper uses the words
task, request, and stage in a fairly interchangeable manner.

A process starts with a request to someone or to some group.
An example of a high level task might be the assignment of
the task “Create a New Product” from the president of a
company to a product development organization. The task
may be accepted or declined (more on this later).

The description of the task is free form text; it is not
constrained to a set of predefined tasks. A lengthy descrip-
tion of the job may be included. This allows language to be
used naturally for the precise description of the task.



The Model

A Business Process Environment Supporting Collaborative Planning 4 of 13

April 27, 1994

easy for the recipients to have plan templates in place that
are automatically invoked.

2.2 Stages

A stage is eitheractive or inactive. Any number of stages
may be active or inactive concurrently. The stage is active at
the time that the people are expected to be performing the
task, or taking whatever steps are necessary to make the
decision.

Each stage is assigned to arole. A role is simply a variable
which holds a list of names of people or groups. A role is not
an attribute of an individual, but rather a relationship
between a person (or group) and a particular colloquy. A
given person may play one, two, or all of the roles simulta-
neously in one colloquy, while playing different roles in
another colloquy. The role that is assigned to the stage is said
to be responsible for the stage.

A stage includes one or moreoptions. Each option has a
name that can appear in a menu. A longer description is also
available to the user through the use of a help facility. Selec-
tion of an option will cause the completion and deactivation
of the stage, and will usually send an event to activate
another stage.

Events are sent from stage to stage. An event can be named
any arbitrary string value. The most common event sent is an
activate event, which causes the receiving stage to activate if
it is inactive. Finally, the last stage in a plan will send an
event to an exit node, which will deactivate the entire plan
and send an event to the parent stage in order to communi-
cate the results of the subplan to the parent plan.

2.3 Micro-Options

Options can affect the state of a plan; micro-options affect
the state of the stage. These imbedded capabilities of a stage
simplify plans for the end user. These options are involved
with the offering of and acceptance of tasks within the plan.
They help facilitate the process of coming to agreement
about a particular task or question.

The stage starts out inactive in a state called unstarted. It
remains in this state until it receives an activate event, which
causes it to become active.

When first activated, a stage is put into the offered state, if
the role is not empty, indicating that the task is being offered
to an individual or group. If the role is empty, the stage goes
to the unassigned state. If it is offered to an individual it will
check to see if that individual has configured the system to
automatically accept and invoke a plan from a template.
Failing this, the stage waits in offered mode.

Upon seeing that a request has been offered, the user may
first review the details about the task. If the task or questions
is a simple one the user may take an option directly implic-
itly accepting the stage. If the task will take an extended
time, or if the task is to be decomposed into a plan, then the
accept micro-option will put the stage in the accepted state.

This has the effect of committing the user to do the task. An
individual accepting a stage that is assigned to a group of
people has the effect of removing the rest of the group from
the responsibles list, thereby reserving the task to himself.

Alternately, the user maydecline the task, which primarily
removes himself from the role for that task, and subse-
quently may cause the stage to go into the unassigned state.
When a user declines a stage assigned to a list of users that
user is removed from the list. Only when everyone has
declined the task, and the list is empty, does it go to the
unassigned state.

In the unassigned state the stage appears to be the responsi-
bility of the owner of the plan and thereby brings the owner’s
attention to the stage; in effect sending it back to the
requester. The owner may put it back in the offered state by
using the reassign micro-option. By alternating between the
offered and unassigned states, the owner and the assignee
may carry on a dialog in order to iron out any detail before
acceptance (see section 2.4 User Messages). During this
process, the owner might change the task, or the person to
which the stage is assigned.

When the user actually takes an option that deactivates the
stage, or the subplan is completed, then the stage is put into
the completed state. The third inactive state is reserved for
when the stage is deactivated by an external event. An
approximate state chart for a stage is shown in Figure 1. See
[13] for a thorough treatment of state charts.

2.4 User Messages

The visual process language provides the ability to handle
rich and complex processes, but it is important to remember
that the main design goal is to facilitate communications
between the users. Choosing the “Done” option from a menu
on an active task will tell others that the task is done, but
little else. Constraining the user to this amount of communi-
cations would be insufficiently rich and flexible to handle the
minor deviations that all real world tasks involve.

Therefore, with every option users may include a message
summarizing information the others participating the

unstarted

completed

cancelled

inactive

Figure 1. State chart diagram for a stage

activate

(complete)

terminate

accept
decline

accepted

active

available

offered

decline

automatic manual

sub plan

(role filled)

reassign

unassigned
(role empty)



The Model

A Business Process Environment Supporting Collaborative Planning 5 of 13

April 27, 1994

colloquy may need to know to complete their tasks. The
message can include text, voice, or attached documents of
any format. This message is particularly important if a non-
standard option is chosen, such as a purchase request rejec-
tion. The message explaining why a choice was made, or
what needs to be done before a particular option will be
taken, is appropriately kept within the context of the
colloquy.

Messages may also be associated with micro-options. This is
a good way for an assignee to explain why the request has
been declined, or to propose a counter offer. The owner may
then use the message to accept the counter offer, or perhaps
make yet another offer.

The history list is a record of all options and their associated
messages and can be browsed at any time by any participant
of the colloquy. It is a way for a new participant of the
colloquy to catch up on what has happened up to this point.
Since date and time are automatically recorded for each
option taken, it is easy to determine which tasks are taking
the longest and might possibly need some fine tuning of the
process.

Finally, since the colloquy functions as a shared work space,
any participant may edit the data and/or add a commentary
message at any time.

Since history items are made readily available to others, the
question of privacy comes up. It is important to remember
that events recorded in history are significant events that are
needed to coordinate work, such as reaching completion on a
certain stage in a project. It is the sort of information
routinely communicated at status meetings. Yet some groups
like to hold their internal status private, communicating only
the aggregate status. To handle this, history is available only
to participants of a colloquy, not the general public. If a
group participating in a colloquy wishes to keep the handling
of a stage private, instead of creating a sub-plan, they will
create a child colloquy. The difference is that since the plan
will reside in a different colloquy, there is a different list of
participants, and the child colloquy is private to them, yet the
end result is reported back to the original colloquy. This is
analogous to taking a private conversation out of a meeting
room, and returning to the meeting with a conclusion.

2.5 Finding Your Tasks

Assigning an active stage to a user is not complete until that
user has been made aware that the task exists. In a large
organization making heavy use of the system, thousands of
active colloquies with hundreds of thousands of individual
tasks may exist. Only a very small fraction of those tasks are
active at any one time. The system must provide a way to see
all of a user’s assigned stages quickly and easily. The system
provides a window that continually displays all colloquies
that contain one or more active stages assigned to the
individual. The user is able to distinguish between tasks that
have been accepted, and ones that have just been offered.

The active list functions as a to-do list. As new stages
become active, they appear on the active list. As options are

taken that complete stages, they disappear from the list.
When a task is automated by a subplan, it disappears from
the list, but possibly stages in the subplan might appear. If a
stage is reassigned, it disappears from old assignee’s list, and
appears on the new assignee’s list.

The active list can also be compared to the in-box of a mail
system for those companies that use e-mail to coordinate
tasks. The e-mail based approach has two disadvantages.
First, the e-mail in-box is private and there is no way for the
others in the collaborative process to know whether a request
has been handled, whether a user has passed the request on
to others, or whether the task has started a series of sub-
tasks. One of our goals is to let others know this information
which is useful for coordination. The other significant disad-
vantage is that once a message is placed in an in-box it can
not be removed except by that user. An email question can
not be directed to a group of people and then retracted. Email
can not be readdressed the way roles and stages can be
reassigned.

Another way to find active tasks is by browsing the parent
colloquy / child colloquy relationships. When an action
within a colloquy starts another colloquy, the new colloquy
is a child-colloquy of the original one. Every colloquy
displays a list of all child colloquies, as well as the subset of
child colloquies that currently have an active task assigned to
the user.

Since stages can be activated in parallel, any number of
stages may be active at a given time within a colloquy. When
a user views a colloquy, the colloquy is searched for all
active stages and are presented as a set of active tasks. If that
user is playing a role that is responsible for one or more
stages, the options for those stages are presented to the user
as menu items. The user may not take any options on stages
for which he is not responsible.

2.6 Scripts

If an automated action needs to be performed at a particular
point in a process, aprogrammed node is used which
includes a user specified script. In the current implementa-
tion of the system this automation is provided by an inter-
preted scripting language called TCL (Tool Command
Language)[24].

Options placed on a stage can have programmed side effects.
Just after the option is chosen, a user defined script is
executed on the client module, and another script is executed
on the server, thereby allowing for side effects beyond
activating and deactivating stages.

Each stage has two scripts: one that is executed when the
stage is activated, and another that is executed when it is
deactivated. If a task is supposed to take place with a partic-
ular environment setting, it can be set up as the stage is
activated. Or a stage might be programmed to send email
when it is activated. A stage might be programmed to check
a file back into the source maintenance system when it is
deactivated.



Visual Elements

A Business Process Environment Supporting Collaborative Planning 6 of 13

April 27, 1994

3.0 Visual Elements
Users use a program, Graphical Planner, to create and edit
plans and templates in VPL. The basic elements are nodes
which are connected by arcs. There are many classes of
nodes: stages, split-stages, AND-node, programmed-node,
start-node, etc. Nodes may be either active or inactive. Arcs
are placed on nodes in order to program them to respond to
particular events, and to send events to other nodes. Arcs
represent options that are available to users when that stage
is active, as well as the events that are sent as a result of
choosing that option.

3.1 Stages

A stage is a node where the process stops for user interac-
tion; other nodes execute without waiting. Stages are repre-
sented in VPL by ellipses. The title of the task or question
appears in the lower compartment of the ellipse. The
assignee role appears in the upper compartment of the
ellipse.

A special kind of stage is a split-stage which when activated
is duplicated for every person assigned to the stage, so that
each person may make their choice independently. A split
stage is indicated by a double bordered ellipse.

Small circles on the edge of a stage represent an option for
the user. When the stage is active, each option will cause a
corresponding item in the options menu to appear to the user
who is assigned this task. The letter within the small circle is
a first-letter mnemonic for the menu item that is presented to
the user.

3.2 Events

An option, if chosen by the user, can send an event to the
stage designated by the arrow coming from the option. An
event can be specified as any string of characters. The most
common event,activate, does not require a label.

The option will normally deactivate the stage that it is upon.
Alternately, an option may be set so that the event is sent
without deactivating the stage, allowing both stages to be
active. This is indicated by use of inverse coloration of the
option.

An event may be sent when a node of any kind activates or
deactivates, without any regard to how the node was
activated or deactivated. An event triggered upon activation
is an arrow without a circle at the base of it.

When a plan is created, thestart node is automatically
activated. It immediately deactivates triggering the events
attached to it.

When anexit node is activated, it will send the event speci-
fied in the exit node to the parent of the plan. There will be
an exit node for every different event that the parent stage is
expecting to receive. Any stages remaining active within the
plan will be terminated by the exit node, thereby stopping all
activity within the plan.

When two or more arrows are pointing into a stage it means
that the first activate event from any one of them will
activate the stage. A stage that is already active ignores any
subsequent activate events it might receive. This OR-like
behavior is common for all VPL nodes except for the AND-
node (described below) which has been included in the
language precisely for this reason.

QA Report - default

Fixed

Start

Submitter

Enter and/or Correct Report

QA

TestLead

Deferred

QA

TestLead

Reproduce

QA
Programmer

Fix Problem

QA

ProjMgr

Approve Rejection

QA

TestLead

Verify Fix

QA

ProjMgr

Approve Deferral

QA

Abort

Rejected

C

C

R

R

F

R

F C

S

C

A

R D

D

C

Event
S = Submit

A = Abort

C = Not

R = Reproduced

D = Defer

R = Reject
F = Fixed

F = Not Verified
C = Closed Fixed

Option

Stage

Exit Node

Figure 2. The
Bug Report
Tracking Process

Name of
Process

Owner of
Process

Start Node

Assignee

Task or
Question
(Request)



Examples

A Business Process Environment Supporting Collaborative Planning 7 of 13

April 27, 1994

3.3 Automatic Nodes

The simplest type of automatic node is theprogrammed
node. This node is activated by an activate event from any
source. It executes a script and immediately deactivates,
triggering events that are waiting on deactivation. All
automatic nodes may have any number of obligations, signi-
fying that when it is complete, it will send events to any
number of stages. This allows any automated node to start
parallel tracks in a plan.

In cases where the planner wishes to assure that all of a
particular set of events occur before the triggering of the next
stage, he must use anAND-node. This symbol, a small circle
with a plus in it, means that all incoming events must be
received before the output event is sent. Common usage

is missing some detail and is therefore sent back to the
submitter to supply the missing information and to submit it
again. Notice that the use of loops like this make the plan
non-linear and a better fit to the real world. The capability to
construct such quality loops answers many of the problems
discovered with linear oriented work flow systems.[21]

The request to reproduce the problem comes from the
Project Manager to the Test Lead. Notice that this happens
without requiring the Project Manager to be aware that a bug
has been submitted. This is because the submitter has
followed the plan set up by the Project Manager. This is how
the model assures that proper authority is presented when the
proper process is used

Design Change - ossi

submitter

Review

DesignChange

Exit

tester

Run Tests

DesignChange

Start

submitter

Propose

DesignChange

team

Review

DesignChange

writer

Update Doc

DesignChange

tester

New Tests

DesignChange

programmer

Coding

DesignChange

A

P

A

R

N

C

W

F

P
D

Figure 3. An
 example
showing
parallelism

Split Stage
(duplicated
for every
member of
Team)

Programmed
Node (without
script it serves
only to start
parallel stages)

AND-Node
(waits for every
member of team
to approve)

AND-Node
(waits for both
stages to send
event, before
it activates the
next stage)

would be stages that are triggered when a set of parallel
stages are all completed, for example when every person in a
group is finished with a particular message or document.

The timer-node is a programmed node that has the behavior
of waiting for a particular amount of time after activation
before deactivating. Any amount of time may be specified
from minutes up to weeks or months. The purpose is to allow
for reminder style events that appear after a specified time.

In order to program the process so that it activates different
task on different conditions, a case stylebranch node is
provided. It consists of a set of conditions. The conditions
may make use of any attribute of the colloquy. Each condi-
tion has a obligation attached that will send a specified event
to a particular stage.

4.0 Examples
An example plan which is used within a software develop-
ment team to handle and process bug report is shown in
Figure 2. It represents a Project Manager point of view on
the way that a software development bug report is handled.
This plan was invoked as a request from the submitter to the
project team (fulfilled here by the project manager) to handle
a particular bug report. The first step in the process is for the
submitter to input the details about the bug. This information
is kept in the colloquy’s shared data area.

Once submitted, the Test Lead becomes responsible to
“reproduce” the bug based on the information in the report.
Failing to reproduce the bug typically means that the report



Examples

A Business Process Environment Supporting Collaborative Planning 8 of 13

April 27, 1994

The “Design Change” plan shown in Figure 3 is a good
example of the proper use of parallelism. When the plan is
started, the design team is asked to implement a feature.
Once submitted, the review team is responsible to review the
request. Since this is a split stage and because the approve
option points into an AND-node, every member of the
review team will need to approve it. But if any member of
the team rejects the request, it goes back to the report stage.
After approval by the review team, three stages are started in
parallel: the doc team is asked to modify the documentation,
the test team to create some tests, and the programmer is
asked to implement the code changes. The three stages that
would be active at this point are highlighted in the figure.

Eventually and only after the programmer and the test team
have declared themselves finished with their activities will
the test team be requested to run and test the new code. This
stage could be completely automated with a script, or might
be manual.

Once the program tests are successfully passed and the
documentation changes are done, the designer is asked to
review the work. The parallelism allows unrelated activities
to proceed independently of each other.

4.1 No Subplan - Manual Operation

When the “Can Problem be Reproduced?” stage is activated,
and there is no subplan, then the user must respond to it
manually. This means that the colloquy appears on the Test
Lead’s “active” list, indicating that the Test Lead has respon-
sibility for this stage within the colloquy.

Choosing a colloquy from the active list will cause the
problem report form to appear on the Test Lead’s screen. The
Test Lead must respond to the request from the Project
Manager by selecting either a menu item that says “Can not
reproduce,” or “Reproduced,” These menu items were
generated automatically from the VPL description of the
plan. “Accept” & “Decline” micro-options are always
automatically available in any stage so that the Test Lead can
communicate whether the task will be done or not. Note that
declining at this stage will bring the Project Manager into the
colloquy for the first time, to resolve the problem. Eventu-
ally the Test Lead determines whether the problem is repro-
ducible or not, selects the appropriate menu option, and the
plan takes its course.

4.2 Subplans - Automating Operation

Responding to a request may be a complex process, subplan-
ning may be used to complete the task. A subplan is no
different from a plan and is described in the same VPL
language. The only difference is that the possible options
that the parent stage, the stage being subplanned, expects
appear as exit nodes on the right in the subplan. The user can
then build the subplan by adding in stages, and assigning
them to people. The subplan need not be complete before it

is started, because it can be edited and modified at any time.
Ultimately, connecting an option from a stage to one of the
exit nodes will have the exact same effect as choosing the
item from the menu as it would appear in manual mode.

4.3 Automatic Subplans from Plan Templates

The Test Lead may often receive the request: “Can Problem
Be Reproduced?” Manually designing and creating the plan
every time could become quite tedious. Instead the Test Lead
may design a plan, or save one of used plans, as a template to
provide a starting configuration. This plan may then be
freely modified to fit the needs of the instance.

The plan template can be set to be invoked automatically
when the request is offered, or to wait until the assignee has
accepted the task before creating the subplan. The latter
option is so that the person might have a chance to review
the details before accepting what might be a very complex
task. If automatic invocation is chosen, then the assignment
of subtasks could be passed on to others without the Test
Lead being involved at all.

Two more options are provided in the current implementa-
tion to handle exceptions and to simplify VPL programming:
The first is ability to decline the task after the plan is started.
This allows one to design a plan template which examines a
few parameters and continues or declines programmatically.
The second is the ability to restart the plan from the start-
node programmatically. this should simplify the logic
needed to handle complex conditional, or when someone
discovers late in the process that one of the initial assump-
tions was wrong. Restarting a process allows the conditional
branches to be rerun from the beginning.

4.4 Key to Success

Allowing incremental automation is a key to acceptability of
the model and the Regatta system. Without automation the
system works like a better e-mail: a request is sent from one
person to another and retains the benefit of the shared space
and the history mechanism. As users become more sophisti-
cated, or tasks more repetitive, they may automate their own
tasks, by creating plans and plan templates using VPL. Tasks
that are rare and are not worth the trouble to automate do not
need to be automated.

It is also critical that the person who does the automating is
the same person who sees the benefit from this. You
automate your own tasks. the more time you put into it, the
more benefit you receive. Lack of observation of this
principle is cited as a reason for failure of many groupware
systems.[7][8][9] A similar plea for empowering user is
made in [1]. VPL empowers users to have control over their
individual parts of the process, allowing them to experiment
with, modify, and evaluate the processes, leading to real
business process reengineering.



Other Representations

A Business Process Environment Supporting Collaborative Planning 9 of 13

April 27, 1994

QA Report - default

Fixed

Start

Submitter

Enter and/or Correct Report

QA

TestLead

Deferred

QA

TestLead

Reproduce

QA
Programmer

Fix Problem

QA

ProjMgr

Approve Rejection

QA

TestLead

Verify Fix

QA

ProjMgr

Approve Deferral

QA

Abort

Rejected

C

C

R

R

F

R

F C

S

C

A

R D

D

C

5.0 Other Representations
Pert Charts look superficially like VPL. The biggest differ-
ence is that the lines connecting the tasks in a Pert chart
really represent dependency relationships or preconditions.
A task can be started when all of the tasks that are connected
before it are completed. This AND-like behavior - contrary
to the VPL OR-like behavior - makes it difficult to create
loops or cycles within the flow. Processes described with a
Pert chart have a deterministic, all-or-nothing quality about
them that makes them very unsuitable for all but the most
highly structured tasks.

Work Breakdown Structure is another formalism that helps
one understand the relationships of different tasks within a
project. It is a hierarchical decomposition of the project into
logical categories or groups. It is primarily useful for catego-
rizing tasks. Because it lacks a way to represent parallel
processes, it is considerably weaker than even pert charts.

State Diagrams are useful for linear flow processes[15]. But
state diagrams would be a poor choice for modeling organi-
zational processes due to the difficulty of representing paral-
lelism.

State Charts[13] have been used with some success in
modeling group processes.[20] While clearly an improve-

ment over state diagrams, they do not model speech acts or
communications within the group, and do not allow different
parts of the plan to be owned by different people. “Hyper-
lines,” when used, make state charts difficult to read because
connections are not made graphically explicit. While it
models tasks, the person doing the task is shown in a
separate representation outside of the behavior state chart.

Entity / Relationship diagrams help in understanding the
relationship of organizations, people, and artifacts, but they
do not provide the sequencing that is necessary for coordi-
nating the tasks of an organization.

Data Flow diagrams give insufficient clues as to the
sequencing of the events. It is difficult with data flow to
describe different tasks being performed on the same artifact
in parallel. Finally, one of the key benefits that information
technology gives us is fast concurrent access to information
regardless of location; modeling a system as moving data
from one point to another works contrary to this benefit.

The Regatta approach is to allow data to be ubiquitously
available to all members of a colloquy. The completion of a
task is not accompanied by a loss of access to the data
manipulated by that task. Thus the flow of data is far less
important, allowing Regatta VPL to concentrate on coordi-
nation of behavior.

Figure 4. The upper plan, owned by the
Project Manager, represents his view of
the process, and only he may modify that
plan. The highlighted active stage repre-
sents a request from the Project Manager
to the Test Lead. The subplan has been
created by the Test Lead in order to
satisfy this request. The Test Lead holds
exclusive right to modify the subplan.
Results in the subplan effect transitions
in its parent.

QATestLead - default

Start

Tester

Test DOS

Bug2

Tester

Test Unix

Bug2

TestLead

Platform

Bug2

Reproduced

Can_Not_Reproduce

TestLead

Review Report

QA

D

U

R

C

R

C

R

A



Conclusion and Project Status

A Business Process Environment Supporting Collaborative Planning 10 of 13

April 27, 1994

Petri Net formalism can be seen as the basis and roots of
VPL. Stages are activated or deactivated by events which are
quite similar to tokens. VPL can be modelled using a Petri
Net. Petri Net formalism is far more general, and less
compact than the VPL diagrams when modeling collabora-
tive processes. In the Petri Net, all of the internal status
would need to be modelled explicitly, making the resulting
diagram impossible for an average computer user to read.

Coloured Petri Nets[16] go a long way toward simplifying
the Petri Net representation of the VPL elements. Particu-
larly, the VPL events would become simply colored tokens,
and the number of duplicated constructs would be reduced.
Coloured Petri Nets are not specialized for collaboration and
speech acts, making them less appropriate for inexperienced
users to read and understand. Regatta VPL hides a lot of the
details. In many ways, the Regatta VPL could be considered
an extension and specialization of coloured Petri Nets.

Information Control Nets[4] work in a way quite similar to
Regatta VPL. The main difference is that VPL is simpler
because it does not attempt to model the flow of documents
from one task to another, or in and out of archives. Because
of location independence of information this modelling of
the location of documents was considered an unwarranted
complication of the description of the process.

Role Interaction Nets look to be a promising way to repre-
sent collaborative behavior, but appear to be less procedural
and possibly more abstract than VPL diagrams for repre-
senting common activities.

5.1 Negotiation Model

While supporting negotiation, one of Regatta Technology’s
strong design concepts is that it does not enforce a specific
model for negotiation. This is significantly different from
other systems, such as Action Workflow, where a specific
negotiation model is included.

It may be true that linguists can accurately model all negotia-
tions between two parties by a set of phases and transitions.
It is also true that most parties involved in a negotiation are
completely unaware of specific speech acts and phase transi-
tions that are taking place. Speech act theory[27][28], and
other linguistic theories, are interesting and important
because they attempt to explain things that are not intuitive.

6.0 Conclusion and Project Status
A system that implements this model is in limited avail-
ability. The server and client both run on a Unix workstation
(SPARCstation for now) with an XWindows user interface.
A MS Windows supported client is expected in early 1994.

Experiments with the existing system have shown that the
visual formalism is sufficiently powerful to model a wide
variety of business processes. Inexperienced users are able to
read the diagrams after only a few minutes of explanation
about how they work.

One must question whether a theory thatexplains natural
behavior is a good basis for a tool that is used in place of that
behavior.

In a more natural setting, people are primarily aware of state-
ments being made and whether the “ball is in their court”.
Regatta supports a face to face style communication in
natural language that allows for complex levels and struc-
tures to any interaction and yet, liberates the parties involved
from learning a new philosophy in order to make their
moves explicit. With each statement, the “ball” may option-
ally be placed in the other person’s court. The emphasis has
been to make Regatta intuitive and easy to use by the
untrained individual.

5.2 Comparison to Action Workflow

Action Workflow[22] is clearly an important system to
compare to due to their strong position in the work flow
industry, and also due to the fact that they offer a way of
diagramming the process. Like most workflow systems,
Action Workflow is not designed to be programmed by the
user, does not support changes on the fly, does not support
individual versions of plan templates, and has no support for
incremental improvement of processes. It is not a collabora-
tive planning tool, yet it does allow for modeling of
processes where communications between individuals is
represented as the key to coordination.

Because of the central place given to decision making within
a work process, Regatta technology makes it exceptionally
easy to create process templates with choices that lead down
different paths using only the graphical editor. In many other
systems, including Action Workflow, such decisions and
branches are made in a much less direct way, usually
involving prompting for the decision, saving a value, and
then testing that value in a condition node. While not being
extremely complicated, it does nevertheless require a greater
sophistication as a programmer than simply drawing a new
arrow coming out of a stage. When the programming is done
non-graphically, it can not be seen in the graphical represen-
tation.

Users will typically keep a small repertoire of very generic
processes, such as “Question/Answer,” or “Request/Done,”
that are used as the basic building blocks of everyday activi-
ties. The more complicated plans are reserved for formal
processes.

6.1 Results from a Typical Site

The first major deployment of the technology was to a
software development team with 15 engineers and 2
managers. Their task was to merge operating system changes



Appendix / Definition of Terms

A Business Process Environment Supporting Collaborative Planning 11 of 13

April 27, 1994

from 3 different sources into a single unified version of the
OS. Being such a large and complex task, this was a good
candidate for use since process support more useful as the
number of separate activities gets very large.

Porting began full scale in August, taking source from four
different source bases. Having decided in May to use
Regatta the team began to actively, use Regatta from the start
of September.

The site has been using Regatta process support for 6
months. They track typically around 300 parallel colloquies
through 5 distinct phases of development. They has devel-
oped a reporting tool that scans the Sybase database at a
regular interval (every 15 minutes) and generates reports of
the current status of all colloquies. This report is fed into
XMosiac, a hypertext tool, in which live links are set up
leading to Regatta colloquies. When the links are followed,
the Regatta viewer is informed, and a viewer context is
launched to display the desired colloquy.

It was noted that Regatta was particularly useful during the
extremely active period just before an intermediate release.
During this time people were interacting fairly actively
through regatta. One engineer noted once being quite
pleased that after making an entry reporting a problem, by
the time he got to the responsible engineer’s desk the
problem had already been fixed. The ability for synchronous
work is a key factor during times of heavy activity.

The result is a system which gets regular use and the team
depends upon for maintaining their status. Keeping the status
of 300 separate processes completely up to date is a job that
might take a person full time. Yet with Regatta, any member
of the team can have instantaneously up to date status at any
time. Regatta made command assignment easier. It made
tracking/dropping/reassigning of commands trivial as well as
doable by everyone. It made the project status available in a
consistent and regular manner. This was especially useful for
seeing what remained to be finished and merged for a
release.

The team made this statement: “Regatta helped formalize the
process, thus improving quality. Quality was improved
because no units were overlooked and QA procedures were
not neglected. Regatta made it very difficult to accidently
ship work that had not properly passed the QA stage.”

6.2 The Regatta Vision

In summary, the model and visual language are appropriate
to accomplishing the three goals:

1. Coordination: business processes may be automated;
users can find tasks that are waiting for them to do; excep-
tions can be handled in an efficient manner.

2. Understanding Processes: discovery of the process is
supported by allowing activation of incomplete plans that
may be later modified on the fly; a history mechanism
records what actually happened; the plan in its current
state is depicted in a graphical form, with the roles, tasks,
and responsibility made clear; built in help system
explains new processes or changes in a process to users.

3. Change: VPL enables a greater number of users to
program processes; processes are partitioned into plans at
different levels to allows each user to plan their part of the
process from their viewpoint, and to allows different
people to control different parts of the process.

Goals two and three are complementary; while an under-
standing of the process helps point out areas of potential
improvement, it is imperative that after a modification the
system help explain the change, so that people can work
effectively within the new process.

Our vision is that such a continual cycle of experimenting
with new processes and observing the results will lead to
what has been called a “Learning Organization”[29]. This is
a new breed of organization transformed by information
technology to be truly dynamic, highly efficient, and able to
respond quickly to today’s increasingly unpredictable
external pressures.

6.3 Acknowledgments

The authors would like to thank Ron Nelson and the Equity
team, Simon Kaplan and the ConversationBuilder team for
discussions and early collaboration about the model; H
Yoshida, T Kondo, and R Yamamoto at Fujitsu Laboratories;
T Watanabe, Iwakata, S Hamano, Yamamoto, Araki, and K
Fukao in Fujitsu Ltd.; and many others who helped clari-
fying the expressions contained herein.

7.0 Appendix / Definition of Terms
The following terms are defined to facilitate the discussion
of the model features. The elements in bold are represented
visually, while the other items must be entered through some
form of dialog box.

❐ system -> ([colloquy]+ [forms]+ [plan tem-
plate]+)

A colloquy is a context for a process. The colloquy is a
shared work space which serves to hold the information

needed to execute a process. A colloquy can be visualized as
having a “white board” upon which the various parts of the
process can read and write. The information on the white
board may specify documents being worked on, attachments
for specific purposes within the process, and specific field
values needed for the process.

❐ colloquy -> (id name description main-plan
[subplan]+ [attribute]+ [subcolloquy-ref]+
[history-item]+ participant-list responsible-
list)



References

A Business Process Environment Supporting Collaborative Planning 12 of 13

April 27, 1994

A plan is a formal definition of a process required to perform
a specific task with specific results. A plan represents a
single level, or a single viewpoint, while the entire process,
or colloquy, will be composed of a collection of plans. A
plan may be modified for a particular instance of a process
without affecting other existing plans, or future plans.

❐ plan -> (id, name description [node [arc]+]+
start-node [exit-node]+ [roles]+)

Invoking the plan template creates a plan in its initial starting
configuration. When a plan template is modified it affect
only future invocations, and has no effect on plans within
active processes.

A main plan is a plan that was used to create a colloquy.

A subplan is a plan that was invoked in response to a stage
in another plan. A subplan is invoked within the same
colloquy as its parent.

A child colloquy is a separate process with a different
“white-board” that was started within the context of a
colloquy. The parent colloquy may be waiting for the result
from a child colloquy, but in all other respects they are
separate processes.

Thenode is the basic building block of a plan. It represents
something for a group or individual to do; it is either a task
or a question. A stage will have any number of arcs placed
on it in order to define how the stage will respond to various
events.

❐ node -> AND-node | programed-node | condi-
tional-node | stage | split-stage

❐ stage -> ( name description role-ref  form-ref
start-up-script shut-down-script)

A role is a placeholders for the participants in a plan. Roles
are used so that an individual can be assigned to a number of

tasks concurrently, and so that it is easy to change the people
assigned to the tasks.

A form  is a way to present to the viewer information from
the colloquy that is relevant to the current task.

An arc is how a particular stage is configured for its place in
the plan. Selection of an option typically completes that
stage of a process, and starts up another stage.

❐ arc-> (option arrow)
❐ arrow -> ( trigger event-to-send destination-

ref )

An arrow  is the definition of how to send an event. Arrows
can be triggered two ways: upon deactivations of the stage,
and by receipt of a specific event.

❐ option -> (expectation description  help-mes-
sage client-script)

❐ expectation -> ( event-name deactivate-or-wait
server-script)

An expectation is a specification of what the stage is to do
when a particular event is received. The expectation can be
set for a particular event from a particular other stage, or
from any stage. The expectation can cause the stage to be
activated or deactivated.

TheViewer is the program run on the user’s workstation to
connect to the system. The viewer presents the a view
customized for each user.

The Graphical Planner is a program that allows users to
create and edit plan in VPL.

TheForm Builder  is a program that allows users to edit and
create forms through which colloquy data is displayed.

8.0 References
[1] Andrew Clement, Computer Support for Computer

Work: A Social Perspective on the Empowering of End
Users,CSCW 90 Proceedings, ACM Baltimore MD,
1990

[2] Andrew Clement, Computing at Work: Empowering
Action by ‘Low-level Users’,Communications of the
ACM, 37(1):53-63 January 1994

[3] Thomas H Davenport, James E Short, The New
Industrial Engineering: Information Technology and
Business Process Redesign,Sloan Management
Review, Summer 1990.

[4] Clarence A Ellis, Gary J Nutt, Office Information
Systems and Computer Science, reprinted as reading 9
in Computer Supported Cooperative Work, Irene Grief
ed., Morgan Kaufman, San Mateo, 1988

[5] Gartner Group, Inc. Business Process Re-engineering
SPA-210-590, August 7, 1991

[6] Saul Greenburg,Computer Supported Cooperative
Work and Groupware, Harcourt Brace Jovanovitch,
Academic Press, 1991

[7] Jonathan Grudin, Obstacles to user involvement in
software product development, with implications for
CSCW, reprinted in [6]

[8] Jonathan Grudin, Why CSCW Systems Fail,
Proceedings of the 1988 Conference on Computer
Supported Cooperative Work, ACM, p85-93, Portland
Oregon, 1988

[9] Jonathan Grudin, Groupware and Social Dynamics:
Eight Challenges for Developers,Communications of
the ACM, 37(1):93-105 January 1994

[10] Keith Hales, Mandy Lavery,Workflow Management
Software: The Business Opportunity, Ovum Ltd.
December 1991

[11] Michael Hammer, W G Howe, V J Kruskal, I
Wladawski, “A very high level programming language



References

A Business Process Environment Supporting Collaborative Planning 13 of 13

April 27, 1994

for data processing applications,”Communications of
the ACM, 20(11):832-840, Nov 1977

[12] Michael Hammer, Re-engineering Work: Don't
Automate, Obliterate,Harvard Business Review, July/
August 1990

[13] David Harel, On Visual Formalisms,Communications
of the ACM, 31(5):514-530, May 1988

[14] Carl Hewitt, Offices are Open Systems,ACM
Transactions on Office Information Systems, 4(3):271-
287, July 1986

[15] Robert J. K. Jacob, A State Transition Diagram
Language for Visual Programming,IEEE Computer,
18(8):51-59, August 1985

[16] Kurt Jensen,Coloured Petri Nets, Springer Verlag,
Berlin, 1992

[17] Simon M Kaplan, William J. Tolone, Douglas Bogia,
and Celsina Bignoli, “Flexible, active support for
collaborative work with Conversation Builder”,
Proceedings of the 1992 Conference on Computer
Supported Cooperative Work, ACM, 1992

[18] Simon M Kaplan, Alan M Carroll, Kenneth J
MacGregor, Supporting Collaborative Processes with
ConversationBuilder,Proceedings ACM Conference on
Organizational Computing Systems, p69-79, November
1991

[19] Simon M Kaplan, Keith D Swenson, Operating System
Suport for Collaborative Work,Proceedings for the
Second International Workshop on Object Orientation
in Operating Systems, September, 1992

[20] Marc I Kellner, Software Process Modeling Support for
Management Planning and Control,1st International
Conference on the Software Process, Redondo Beach,
CA, October 1991.

[21] Thomas Kreifelts, Elke Hinrichs, and Karl-Heinz
Klein, Experiences with the Domino Office Procedure
System, Proceedings of the Second European
Conference on Computer Supported Cooperative Work
(ECSCW ‘91), p117-130, Amsterdam, September 1991

[22] Raul Medina-Mora, Terry Winograd, Rodrigo Flores,
Fernando Flores, The Action Workflow Approach to
Workflow management Technology,Proceeding of the
1992 Conference on Computer Supported Cooperative
Work, ACM, 1992

[23] Michael S Scott Morton,The Corporation of the 1990s,
Information Technology and Organizational
Transformation, Oxford University Press, New York,
1991

[24] John K. Ousterhout, Tcl: an Embeddable Command
Language, Computer Science Department, UC

Berkeley. Information on this can be retrieved from the
Sprite Project, at sprite.berkeley.edu.

[25] Sunil K Sarin, Kenneth R Abbott, Dennis R McCarthy,
A Process Model for Supporting Collaborative Work,
Proceedings ACM Conference on Organizational
Computing Systems, November 1991

[26] Michael Schrage, Shared Minds: The New
Technologies of Collaboration, Random House, New
York, 1990

[27] John R Searle,Expressions and Meaning: Studies in the
Theory of Speech Acts, Cambridge University,
Cambridge, 1979

[28] John R Searle, A Classification of Illocutionary Acts,
Language In Society, 5 1-23, 1976

[29] Peter M. Senge,The Fifth Discipline: The Art and
Practice of the Learning Organization Doubleday/
Currency, New York, 1990

[30] Nan C. Shu, FORMAL: A Forms-Oriented Visual
Directed Application Development System,IEEE
Computer, 18 (8): 38-49, August 1985

[31] Paul Strassman, Information Payoff: The
transformation of work in the electronic age. Free
Press, New York, 1985

[32] Keith D Swenson, The Regatta Project,Proceedings of
the First International Conference in Technologies and
Theories for Human Cooperation, Collaboration, and
Coordination, Applica ‘93, March 1993

[33] Keith D Swenson, A Visual Language to Dscribe
Collaborative Work,Proceeding of the International
Workshop on Visual Languages, Bergen Norway,
August 1993

[34] Keith D Swenson, Visual Support for Reengineering
Work Processes, to appear inProceedings of the
Conference on Organizational Computing Systems,
ACM press, Milpitas California, Nov 1993.

[35] Workflow, Groupware, and Re-engineering:,IT
Horizons, 1(3):1-11, September 7, 1992

[36] Michael Zisman,Representation, Specification, and
Automation of Office Procedures, PhD Thesis,
University of Pennsylvania, 1977

[37] Michael Zisman, “Office Automation: Evolution or
Revolution”, Sloan Management Review 19(3):1-16,
Spring 1978

[38] Shoshana Zuboff,In the Age of the Smart Machine,
Basic Books, New York, 1988.


